kanidm/src/lib/entry.rs

1464 lines
50 KiB
Rust
Raw Normal View History

// use serde_json::{Error, Value};
use crate::audit::AuditScope;
use crate::error::{OperationError, SchemaError};
use crate::filter::{Filter, FilterInvalid, FilterResolved, FilterValidResolved};
use crate::modify::{Modify, ModifyInvalid, ModifyList, ModifyValid};
use crate::proto::v1::Entry as ProtoEntry;
use crate::proto::v1::Filter as ProtoFilter;
use crate::schema::{SchemaAttribute, SchemaClass, SchemaTransaction};
use crate::server::{QueryServerTransaction, QueryServerWriteTransaction};
use crate::value::{IndexType, SyntaxType};
use crate::value::{PartialValue, Value};
2019-05-01 06:06:22 +02:00
use crate::be::dbentry::{DbEntry, DbEntryV1, DbEntryVers};
2018-11-15 04:49:08 +01:00
use std::collections::btree_map::{Iter as BTreeIter, IterMut as BTreeIterMut};
use std::collections::btree_set::Iter as BTreeSetIter;
use std::collections::BTreeMap;
use std::collections::BTreeSet;
use std::collections::HashMap;
use std::iter::ExactSizeIterator;
use uuid::Uuid;
// use std::convert::TryFrom;
// use std::str::FromStr;
2018-09-29 09:54:16 +02:00
// make a trait entry for everything to adhere to?
// * How to get indexs out?
// * How to track pending diffs?
// Entry is really similar to serde Value, but limits the possibility
// of what certain types could be.
//
// The idea of an entry is that we have
// an entry that looks like:
//
// {
// 'class': ['object', ...],
// 'attr': ['value', ...],
// 'attr': ['value', ...],
// ...
// }
//
// When we send this as a result to clients, we could embed other objects as:
//
// {
// 'attr': [
// 'value': {
// },
// ],
// }
//
lazy_static! {
static ref CLASS_EXTENSIBLE: PartialValue = PartialValue::new_class("extensibleobject");
}
2018-11-13 08:14:26 +01:00
pub struct EntryClasses<'a> {
size: usize,
inner: Option<BTreeSetIter<'a, Value>>,
2018-11-13 08:14:26 +01:00
// _p: &'a PhantomData<()>,
}
impl<'a> Iterator for EntryClasses<'a> {
type Item = &'a Value;
2018-11-13 08:14:26 +01:00
#[inline]
fn next(&mut self) -> Option<(&'a Value)> {
2018-11-13 08:14:26 +01:00
match self.inner.iter_mut().next() {
Some(i) => i.next(),
None => None,
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
match self.inner.iter().next() {
Some(i) => i.size_hint(),
None => (0, None),
}
}
}
impl<'a> ExactSizeIterator for EntryClasses<'a> {
fn len(&self) -> usize {
self.size
}
}
2018-11-13 08:14:26 +01:00
pub struct EntryAvas<'a> {
inner: BTreeIter<'a, String, BTreeSet<Value>>,
2018-11-13 08:14:26 +01:00
}
impl<'a> Iterator for EntryAvas<'a> {
type Item = (&'a String, &'a BTreeSet<Value>);
2018-11-13 08:14:26 +01:00
#[inline]
fn next(&mut self) -> Option<(&'a String, &'a BTreeSet<Value>)> {
2018-11-13 08:14:26 +01:00
self.inner.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
2018-11-15 04:49:08 +01:00
pub struct EntryAvasMut<'a> {
inner: BTreeIterMut<'a, String, BTreeSet<Value>>,
2018-11-15 04:49:08 +01:00
}
impl<'a> Iterator for EntryAvasMut<'a> {
type Item = (&'a String, &'a mut BTreeSet<Value>);
2018-11-15 04:49:08 +01:00
#[inline]
fn next(&mut self) -> Option<(&'a String, &'a mut BTreeSet<Value>)> {
2018-11-15 04:49:08 +01:00
self.inner.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
2019-01-22 02:39:56 +01:00
// This is a BE concept, so move it there!
2019-01-28 04:54:17 +01:00
// Entry should have a lifecycle of types. THis is Raw (modifiable) and Entry (verified).
// This way, we can move between them, but only certain actions are possible on either
// This means modifications happen on Raw, but to move to Entry, you schema normalise.
// Vice versa, you can for free, move to Raw, but you lose the validation.
// Because this is type system it's "free" in the end, and means we force validation
// at the correct and required points of the entries life.
// This is specifically important for the commit to the backend, as we only want to
// commit validated types.
#[derive(Clone, Copy, Debug)]
pub struct EntryNew; // new
#[derive(Clone, Copy, Debug)]
2019-05-01 06:06:22 +02:00
pub struct EntryCommitted {
id: u64,
} // It's been in the DB, so it has an id
// pub struct EntryPurged;
#[derive(Clone, Debug)]
pub struct EntryValid {
// Asserted with schema, so we know it has a UUID now ...
uuid: Uuid,
}
// Modified, can't be sure of it's content! We therefore disregard the UUID
// and on validate, we check it again.
#[derive(Clone, Copy, Debug)]
pub struct EntryInvalid;
// This state can't exist because everything is normalised now with Value types
// #[derive(Clone, Copy, Debug, Deserialize, Serialize)]
// pub struct EntryNormalised;
#[derive(Clone, Copy, Debug)]
pub struct EntryReduced;
#[derive(Debug)]
pub struct Entry<VALID, STATE> {
valid: VALID,
state: STATE,
// We may need to change this to BTreeSet to allow borrow of Value -> PartialValue for lookups.
attrs: BTreeMap<String, BTreeSet<Value>>,
}
2018-09-29 09:54:16 +02:00
impl<STATE> std::fmt::Display for Entry<EntryValid, STATE> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "{}", self.get_uuid())
}
}
impl Entry<EntryInvalid, EntryNew> {
2019-02-25 06:48:37 +01:00
#[cfg(test)]
pub fn new() -> Self {
Entry {
2019-01-22 02:39:56 +01:00
// This means NEVER COMMITED
valid: EntryInvalid,
state: EntryNew,
2018-11-07 07:35:25 +01:00
attrs: BTreeMap::new(),
}
}
// Could we consume protoentry?
//
// I think we could, but that would limit us to how protoentry works,
// where we are likely to actually change the Entry type here and how
// we store and represent types and data.
2019-05-01 06:06:22 +02:00
pub fn from_proto_entry(
2019-03-20 06:30:34 +01:00
audit: &mut AuditScope,
e: &ProtoEntry,
2019-03-20 06:33:22 +01:00
qs: &QueryServerWriteTransaction,
) -> Result<Self, OperationError> {
// Why not the trait? In the future we may want to extend
// this with server aware functions for changes of the
// incoming data.
2019-03-17 04:24:06 +01:00
// Somehow we need to take the tree of e attrs, and convert
// all ref types to our types ...
let map2: Result<BTreeMap<String, BTreeSet<Value>>, OperationError> = e
2019-03-17 04:24:06 +01:00
.attrs
.iter()
.map(|(k, v)| {
let nv: Result<BTreeSet<Value>, _> =
2019-03-20 06:33:22 +01:00
v.iter().map(|vr| qs.clone_value(audit, &k, vr)).collect();
2019-03-17 04:24:06 +01:00
match nv {
Ok(nvi) => Ok((k.clone(), nvi)),
2019-03-17 04:24:06 +01:00
Err(e) => Err(e),
}
})
.collect();
let x = map2?;
2019-03-17 04:24:06 +01:00
Ok(Entry {
// For now, we do a straight move, and we sort the incoming data
// sets so that BST works.
2019-01-28 10:16:53 +01:00
state: EntryNew,
valid: EntryInvalid,
2019-03-17 04:24:06 +01:00
attrs: x,
})
}
pub fn from_proto_entry_str(
audit: &mut AuditScope,
es: &str,
qs: &QueryServerWriteTransaction,
) -> Result<Self, OperationError> {
// str -> Proto entry
let pe: ProtoEntry = try_audit!(
audit,
serde_json::from_str(es).map_err(|_| OperationError::SerdeJsonError)
);
// now call from_proto_entry
Self::from_proto_entry(audit, &pe, qs)
}
#[cfg(test)]
pub(crate) fn unsafe_from_entry_str(es: &str) -> Self {
// Just use log directly here, it's testing
// str -> proto entry
let pe: ProtoEntry = serde_json::from_str(es).expect("Invalid Proto Entry");
// use a static map to convert str -> ava
let x: BTreeMap<String, BTreeSet<Value>> = pe.attrs.into_iter()
.map(|(k, vs)| {
let attr = k.to_lowercase();
let vv: BTreeSet<Value> = match attr.as_str() {
"name" | "version" | "domain" => {
vs.into_iter().map(|v| Value::new_iutf8(v)).collect()
}
"userid" | "uidnumber" => {
warn!("WARNING: Use of unstabilised attributes userid/uidnumber");
vs.into_iter().map(|v| Value::new_iutf8(v)).collect()
}
"class" | "acp_create_class" | "acp_modify_class" => {
vs.into_iter().map(|v| Value::new_class(v.as_str())).collect()
}
"acp_create_attr" | "acp_search_attr" | "acp_modify_removedattr" | "acp_modify_presentattr" |
"systemmay" | "may" | "systemmust" | "must"
=> {
vs.into_iter().map(|v| Value::new_attr(v.as_str())).collect()
}
"uuid" => {
vs.into_iter().map(|v| Value::new_uuids(v.as_str())
.unwrap_or_else(|| {
warn!("WARNING: Allowing syntax incorrect attribute to be presented UTF8 string");
Value::new_utf8(v)
})
).collect()
}
"member" | "memberof" | "directmemberof" => {
vs.into_iter().map(|v| Value::new_refer_s(v.as_str()).unwrap() ).collect()
}
"acp_enable" | "multivalue" => {
vs.into_iter().map(|v| Value::new_bools(v.as_str())
.unwrap_or_else(|| {
warn!("WARNING: Allowing syntax incorrect attribute to be presented UTF8 string");
Value::new_utf8(v)
})
).collect()
}
"syntax" => {
vs.into_iter().map(|v| Value::new_syntaxs(v.as_str())
.unwrap_or_else(|| {
warn!("WARNING: Allowing syntax incorrect attribute to be presented UTF8 string");
Value::new_utf8(v)
})
).collect()
}
"index" => {
vs.into_iter().map(|v| Value::new_indexs(v.as_str())
.unwrap_or_else(|| {
warn!("WARNING: Allowing syntax incorrect attribute to be presented UTF8 string");
Value::new_utf8(v)
})
).collect()
}
"acp_targetscope" | "acp_receiver" => {
vs.into_iter().map(|v| Value::new_json_filter(v.as_str())
.unwrap_or_else(|| {
warn!("WARNING: Allowing syntax incorrect attribute to be presented UTF8 string");
Value::new_utf8(v)
})
).collect()
}
"displayname" | "description" => {
vs.into_iter().map(|v| Value::new_utf8(v)).collect()
}
ia => {
warn!("WARNING: Allowing invalid attribute {} to be interpretted as UTF8 string. YOU MAY ENCOUNTER ODD BEHAVIOUR!!!", ia);
vs.into_iter().map(|v| Value::new_utf8(v)).collect()
}
};
(attr, vv)
})
.collect();
// return the entry!
Entry {
state: EntryNew,
valid: EntryInvalid,
attrs: x,
}
}
}
impl<STATE> Entry<EntryInvalid, STATE> {
// This is only used in tests today, but I don't want to cfg test it.
#[allow(dead_code)]
fn get_uuid(&self) -> Option<&Uuid> {
match self.attrs.get("uuid") {
Some(vs) => match vs.iter().take(1).next() {
// Uv is a value that might contain uuid - we hope it does!
Some(uv) => uv.to_uuid(),
_ => None,
},
None => None,
}
}
/*
pub fn normalise(
self,
schema: &SchemaTransaction,
) -> Result<Entry<EntryNormalised, STATE>, SchemaError> {
let Entry {
valid: _,
state,
attrs,
} = self;
let schema_attributes = schema.get_attributes();
// This should never fail!
let schema_attr_name = match schema_attributes.get("name") {
Some(v) => v,
None => {
return Err(SchemaError::Corrupted);
}
};
let mut new_attrs = BTreeMap::new();
// First normalise - this checks and fixes our UUID format
// but should not remove multiple values.
for (attr_name, avas) in attrs.iter() {
let attr_name_normal: String = schema_attr_name.normalise_value(attr_name);
// Get the needed schema type
let schema_a_r = schema_attributes.get(&attr_name_normal);
let mut avas_normal: Vec<String> = match schema_a_r {
Some(schema_a) => {
avas.iter()
.map(|av| {
// normalise those based on schema?
schema_a.normalise_value(av)
})
.collect()
}
None => avas.clone(),
};
// Ensure they are ordered property, with no dupes.
avas_normal.sort_unstable();
avas_normal.dedup();
// Should never fail!
let _ = new_attrs.insert(attr_name_normal, avas_normal);
}
Ok(Entry {
valid: EntryNormalised,
state: state,
attrs: new_attrs,
})
}
pub fn validate(
self,
schema: &SchemaTransaction,
) -> Result<Entry<EntryValid, STATE>, SchemaError> {
// We need to clone before we start, as well be mutating content.
// We destructure:
// self.normalise(schema).and_then(|e| e.validate(schema))
e.validate(schema)
}
*/
2019-01-29 08:17:28 +01:00
pub fn validate(
self,
schema: &SchemaTransaction,
2019-01-29 08:17:28 +01:00
) -> Result<Entry<EntryValid, STATE>, SchemaError> {
let schema_classes = schema.get_classes();
let schema_attributes = schema.get_attributes();
let uuid: Uuid = match &self.attrs.get("uuid") {
Some(vs) => match vs.iter().take(1).next() {
Some(uuid_v) => match uuid_v.to_uuid() {
Some(uuid) => *uuid,
None => return Err(SchemaError::InvalidAttribute),
},
None => return Err(SchemaError::MissingMustAttribute("uuid".to_string())),
},
None => return Err(SchemaError::MissingMustAttribute("uuid".to_string())),
};
// Build the new valid entry ...
2019-01-28 10:16:53 +01:00
let ne = Entry {
valid: EntryValid { uuid },
state: self.state,
attrs: self.attrs,
2019-01-28 10:16:53 +01:00
};
// Now validate it!
2019-01-28 04:54:17 +01:00
// We scope here to limit the time of borrow of ne.
{
2019-01-29 07:52:42 +01:00
// First, check we have class on the object ....
if !ne.attribute_pres("class") {
debug!("Missing attribute class");
2019-01-29 08:17:28 +01:00
return Err(SchemaError::InvalidClass);
2019-01-29 07:52:42 +01:00
}
// Do we have extensible?
let extensible = ne.attribute_value_pres("class", &CLASS_EXTENSIBLE);
let entry_classes = ne.classes().ok_or(SchemaError::InvalidClass)?;
let entry_classes_size = entry_classes.len();
let classes: Vec<&SchemaClass> = entry_classes
// we specify types here to help me clarify a few things in the
// development process :)
.filter_map(|c: &Value| {
let x: Option<&SchemaClass> = c.as_string().and_then(|s| schema_classes.get(s));
x
})
.collect();
2018-11-15 04:49:08 +01:00
if classes.len() != entry_classes_size {
debug!("Class on entry not found in schema?");
return Err(SchemaError::InvalidClass);
};
2018-11-13 08:14:26 +01:00
// What this is really doing is taking a set of classes, and building an
// "overall" class that describes this exact object for checking. IE we
// build a super must/may set from the small class must/may sets.
2018-11-14 02:54:59 +01:00
// for each class
// add systemmust/must and systemmay/may to their lists
// add anything from must also into may
2018-11-13 08:14:26 +01:00
// Now from the set of valid classes make a list of must/may
//
// NOTE: We still need this on extensible, because we still need to satisfy
// our other must conditions as well!
let must: Result<Vec<&SchemaAttribute>, _> = classes
.iter()
// Join our class systemmmust + must into one iter
.flat_map(|cls| cls.systemmust.iter().chain(cls.must.iter()))
.map(|s| {
// This should NOT fail - if it does, it means our schema is
// in an invalid state!
Ok(schema_attributes.get(s).ok_or(SchemaError::Corrupted)?)
})
.collect();
let must = must?;
// Check that all must are inplace
// for each attr in must, check it's present on our ent
for attr in must {
let avas = ne.get_ava(&attr.name);
if avas.is_none() {
return Err(SchemaError::MissingMustAttribute(attr.name.clone()));
}
}
debug!("Extensible object -> {}", extensible);
if extensible {
for (attr_name, avas) in ne.avas() {
match schema_attributes.get(attr_name) {
Some(a_schema) => {
// Now, for each type we do a *full* check of the syntax
// and validity of the ava.
let r = a_schema.validate_ava(avas);
match r {
Ok(_) => {}
2019-07-29 09:09:09 +02:00
Err(e) => {
debug!("Failed to validate: {}", attr_name);
return Err(e);
}
}
}
None => {
debug!("Invalid Attribute {} for extensible object", attr_name);
return Err(SchemaError::InvalidAttribute);
}
}
}
} else {
2019-07-28 13:18:25 +02:00
// We clone string here, but it's so we can check all
// the values in "may" ar here - so we can't avoid this look up. What we
// could do though, is have &String based on the schemaattribute though?;
2019-07-28 13:18:25 +02:00
let may: Result<HashMap<&String, &SchemaAttribute>, _> = classes
.iter()
// Join our class systemmmust + must + systemmay + may into one.
.flat_map(|cls| {
cls.systemmust
.iter()
.chain(cls.must.iter())
.chain(cls.systemmay.iter())
.chain(cls.may.iter())
})
.map(|s| {
// This should NOT fail - if it does, it means our schema is
// in an invalid state!
2019-07-28 13:18:25 +02:00
Ok((s, schema_attributes.get(s).ok_or(SchemaError::Corrupted)?))
})
.collect();
let may = may?;
2019-07-28 13:18:25 +02:00
// TODO #70: Error needs to say what is missing
// We need to return *all* missing attributes, not just the first error
2019-07-28 13:18:25 +02:00
// we find. This will probably take a rewrite of the function definition
// to return a result<_, vec<schemaerror>> and for the schema errors to take
// information about what is invalid. It's pretty nontrivial.
// Check that any other attributes are in may
// for each attr on the object, check it's in the may+must set
for (attr_name, avas) in ne.avas() {
match may.get(attr_name) {
Some(a_schema) => {
// Now, for each type we do a *full* check of the syntax
// and validity of the ava.
let r = a_schema.validate_ava(avas);
match r {
Ok(_) => {}
2019-07-29 09:09:09 +02:00
Err(e) => {
debug!("Failed to validate: {}", attr_name);
return Err(e);
}
}
}
None => {
debug!("Invalid Attribute {} for may+must set", attr_name);
return Err(SchemaError::InvalidAttribute);
}
}
}
}
} // unborrow ne.
// Well, we got here, so okay!
Ok(ne)
2018-12-29 10:56:03 +01:00
}
}
2018-12-29 10:56:03 +01:00
2019-01-29 08:17:28 +01:00
impl<VALID, STATE> Clone for Entry<VALID, STATE>
where
VALID: Clone,
2019-01-29 08:17:28 +01:00
STATE: Copy,
{
// Dirty modifiable state. Works on any other state to dirty them.
fn clone(&self) -> Entry<VALID, STATE> {
Entry {
valid: self.valid.clone(),
state: self.state,
attrs: self.attrs.clone(),
}
2018-11-13 08:14:26 +01:00
}
}
2018-11-13 08:14:26 +01:00
2019-01-28 10:16:53 +01:00
/*
* A series of unsafe transitions allowing entries to skip certain steps in
* the process to facilitate eq/checks.
*/
impl Entry<EntryInvalid, EntryCommitted> {
2019-01-28 10:16:53 +01:00
#[cfg(test)]
pub unsafe fn to_valid_new(self) -> Entry<EntryValid, EntryNew> {
Entry {
valid: EntryValid {
uuid: self.get_uuid().expect("Invalid uuid").clone(),
},
2019-01-28 10:16:53 +01:00
state: EntryNew,
attrs: self.attrs,
}
}
2019-05-01 06:06:22 +02:00
}
// Both invalid states can be reached from "entry -> invalidate"
2019-01-28 10:16:53 +01:00
impl Entry<EntryInvalid, EntryNew> {
#[cfg(test)]
pub unsafe fn to_valid_new(self) -> Entry<EntryValid, EntryNew> {
Entry {
valid: EntryValid {
uuid: self.get_uuid().expect("Invalid uuid").clone(),
},
state: EntryNew,
attrs: self.attrs,
}
}
/*
#[cfg(test)]
pub unsafe fn to_valid_normal(self) -> Entry<EntryNormalised, EntryNew> {
Entry {
valid: EntryNormalised,
state: EntryNew,
attrs: self
.attrs
.into_iter()
.map(|(k, mut v)| {
v.sort_unstable();
(k, v)
})
.collect(),
}
}
*/
#[cfg(test)]
2019-01-28 10:16:53 +01:00
pub unsafe fn to_valid_committed(self) -> Entry<EntryValid, EntryCommitted> {
Entry {
valid: EntryValid {
uuid: self
.get_uuid()
.and_then(|u| Some(u.clone()))
.unwrap_or_else(|| Uuid::new_v4()),
},
2019-05-01 06:06:22 +02:00
state: EntryCommitted { id: 0 },
attrs: self.attrs,
2019-01-28 10:16:53 +01:00
}
}
2019-05-01 06:06:22 +02:00
}
2019-01-28 10:16:53 +01:00
impl Entry<EntryInvalid, EntryCommitted> {
2019-05-01 06:06:22 +02:00
#[cfg(test)]
pub unsafe fn to_valid_committed(self) -> Entry<EntryValid, EntryCommitted> {
Entry {
valid: EntryValid {
uuid: self.get_uuid().expect("Missing UUID!").clone(),
},
2019-05-01 06:06:22 +02:00
state: self.state,
attrs: self.attrs,
2019-05-01 06:06:22 +02:00
}
}
2019-01-28 10:16:53 +01:00
}
impl Entry<EntryValid, EntryNew> {
#[cfg(test)]
pub unsafe fn to_valid_committed(self) -> Entry<EntryValid, EntryCommitted> {
Entry {
valid: self.valid,
state: EntryCommitted { id: 0 },
attrs: self.attrs,
}
}
2019-01-28 10:16:53 +01:00
pub fn compare(&self, rhs: &Entry<EntryValid, EntryCommitted>) -> bool {
self.attrs == rhs.attrs
}
}
impl Entry<EntryValid, EntryCommitted> {
#[cfg(test)]
pub unsafe fn to_valid_committed(self) -> Entry<EntryValid, EntryCommitted> {
// NO-OP to satisfy macros.
self
}
2019-01-28 10:16:53 +01:00
pub fn compare(&self, rhs: &Entry<EntryValid, EntryNew>) -> bool {
self.attrs == rhs.attrs
}
2019-02-24 05:15:28 +01:00
pub fn to_tombstone(&self) -> Self {
// Duplicate this to a tombstone entry
let class_ava = btreeset![Value::new_class("object"), Value::new_class("tombstone")];
2019-02-24 05:15:28 +01:00
let mut attrs_new: BTreeMap<String, BTreeSet<Value>> = BTreeMap::new();
2019-02-24 05:15:28 +01:00
attrs_new.insert(
"uuid".to_string(),
btreeset![Value::new_uuidr(&self.valid.uuid)],
);
2019-02-24 05:15:28 +01:00
attrs_new.insert("class".to_string(), class_ava);
Entry {
valid: self.valid.clone(),
2019-05-01 06:06:22 +02:00
state: self.state,
2019-02-24 05:15:28 +01:00
attrs: attrs_new,
}
}
2019-05-01 06:06:22 +02:00
pub fn get_id(&self) -> u64 {
self.state.id
}
pub fn from_dbentry(db_e: DbEntry, id: u64) -> Result<Self, ()> {
// Convert attrs from db format to value
let r_attrs: Result<BTreeMap<String, BTreeSet<Value>>, ()> = match db_e.ent {
DbEntryVers::V1(v1) => v1
.attrs
.into_iter()
.map(|(k, vs)| {
let vv: Result<BTreeSet<Value>, ()> =
vs.into_iter().map(|v| Value::from_db_valuev1(v)).collect();
match vv {
Ok(vv) => Ok((k, vv)),
Err(e) => Err(e),
}
})
.collect(),
};
let attrs = r_attrs?;
let uuid: Uuid = match attrs.get("uuid") {
Some(vs) => vs.iter().take(1).next(),
None => None,
}
.ok_or(())?
// Now map value -> uuid
.to_uuid()
.ok_or(())?
.clone();
Ok(Entry {
valid: EntryValid { uuid: uuid },
2019-05-01 06:06:22 +02:00
state: EntryCommitted { id },
attrs: attrs,
})
}
#[cfg(test)]
pub fn to_reduced(self) -> Entry<EntryReduced, EntryCommitted> {
Entry {
valid: EntryReduced,
state: self.state,
attrs: self.attrs,
2019-05-01 06:06:22 +02:00
}
}
pub fn reduce_attributes(
self,
allowed_attrs: BTreeSet<&str>,
) -> Entry<EntryReduced, EntryCommitted> {
// Remove all attrs from our tree that are NOT in the allowed set.
let Entry {
2019-07-29 09:09:09 +02:00
valid: _s_valid,
state: s_state,
attrs: s_attrs,
} = self;
let f_attrs: BTreeMap<_, _> = s_attrs
.into_iter()
.filter_map(|(k, v)| {
if allowed_attrs.contains(k.as_str()) {
Some((k, v))
} else {
None
}
})
.collect();
Entry {
valid: EntryReduced,
state: s_state,
attrs: f_attrs,
}
}
// These are special types to allow returning typed values from
// an entry, if we "know" what we expect to receive.
/// This returns an array of IndexTypes, when the type is an Optional
/// multivalue in schema - IE this will *not* fail if the attribute is
/// empty, yielding and empty array instead.
///
/// However, the converstion to IndexType is fallaible, so in case of a failure
/// to convert, an Err is returned.
pub(crate) fn get_ava_opt_index(&self, attr: &str) -> Result<Vec<&IndexType>, ()> {
match self.attrs.get(attr) {
Some(av) => {
let r: Result<Vec<_>, _> = av.iter().map(|v| v.to_indextype().ok_or(())).collect();
r
}
None => Ok(Vec::new()),
}
}
/// Get a bool from an ava
pub fn get_ava_single_bool(&self, attr: &str) -> Option<bool> {
match self.get_ava_single(attr) {
Some(a) => a.to_bool(),
None => None,
}
}
pub fn get_ava_single_syntax(&self, attr: &str) -> Option<&SyntaxType> {
match self.get_ava_single(attr) {
Some(a) => a.to_syntaxtype(),
None => None,
}
}
pub fn get_ava_reference_uuid(&self, attr: &str) -> Option<Vec<&Uuid>> {
// If any value is NOT a reference, return none!
match self.attrs.get(attr) {
Some(av) => {
let v: Option<Vec<&Uuid>> = av.iter().map(|e| e.to_ref_uuid()).collect();
v
}
None => None,
}
}
/*
/// This interface will get &str (if possible).
pub(crate) fn get_ava_opt_str(&self, attr: &str) -> Option<Vec<&str>> {
match self.attrs.get(attr) {
Some(a) => {
let r: Vec<_> = a.iter().filter_map(|v| v.to_str()).collect();
if r.len() == 0 {
None
} else {
Some(r)
}
}
None => Some(Vec::new()),
}
}
*/
pub(crate) fn get_ava_opt_string(&self, attr: &str) -> Option<Vec<String>> {
match self.attrs.get(attr) {
Some(a) => {
let r: Vec<String> = a
.iter()
.filter_map(|v| v.as_string().map(|s| s.clone()))
.collect();
if r.len() == 0 {
// Corrupt?
None
} else {
Some(r)
}
}
None => Some(Vec::new()),
}
}
pub(crate) fn get_ava_string(&self, attr: &str) -> Option<Vec<String>> {
match self.attrs.get(attr) {
Some(a) => {
let r: Vec<String> = a
.iter()
.filter_map(|v| v.as_string().map(|s| s.clone()))
.collect();
if r.len() == 0 {
// Corrupt?
None
} else {
Some(r)
}
}
None => None,
}
}
pub fn get_ava_single_str(&self, attr: &str) -> Option<&str> {
self.get_ava_single(attr).and_then(|v| v.to_str())
}
pub fn get_ava_single_string(&self, attr: &str) -> Option<String> {
self.get_ava_single(attr)
.and_then(|v: &Value| v.as_string())
.and_then(|s: &String| Some((*s).clone()))
}
pub fn get_ava_single_protofilter(&self, attr: &str) -> Option<ProtoFilter> {
self.get_ava_single(attr)
.and_then(|v: &Value| {
debug!("get_ava_single_protofilter -> {:?}", v);
v.as_json_filter()
})
.and_then(|f: &ProtoFilter| Some((*f).clone()))
}
2019-01-28 10:16:53 +01:00
}
impl<STATE> Entry<EntryValid, STATE> {
2019-05-01 06:06:22 +02:00
// Returns the entry in the latest DbEntry format we are aware of.
pub fn into_dbentry(&self) -> DbEntry {
// In the future this will do extra work to process uuid
// into "attributes" suitable for dbentry storage.
// How will this work with replication?
//
// Alternately, we may have higher-level types that translate entry
// into proper structures, and they themself emit/modify entries?
DbEntry {
ent: DbEntryVers::V1(DbEntryV1 {
attrs: self
.attrs
.iter()
.map(|(k, vs)| {
let dbvs: Vec<_> = vs.iter().map(|v| v.to_db_valuev1()).collect();
(k.clone(), dbvs)
})
.collect(),
2019-05-01 06:06:22 +02:00
}),
}
}
pub fn invalidate(self) -> Entry<EntryInvalid, STATE> {
Entry {
2019-01-28 10:16:53 +01:00
valid: EntryInvalid,
state: self.state,
2019-01-29 08:17:28 +01:00
attrs: self.attrs,
2018-11-13 08:14:26 +01:00
}
}
2018-11-15 04:49:08 +01:00
pub fn get_uuid(&self) -> &Uuid {
&self.valid.uuid
}
pub fn filter_from_attrs(&self, attrs: &Vec<String>) -> Option<Filter<FilterInvalid>> {
// Because we are a valid entry, a filter we create still may not
// be valid because the internal server entry templates are still
// created by humans! Plus double checking something already valid
// is not bad ...
//
2019-01-20 00:51:22 +01:00
// Generate a filter from the attributes requested and defined.
// Basically, this is a series of nested and's (which will be
// optimised down later: but if someone wants to solve flatten() ...)
// Take name: (a, b), name: (c, d) -> (name, a), (name, b), (name, c), (name, d)
let mut pairs: Vec<(&str, &Value)> = Vec::new();
2019-01-20 00:51:22 +01:00
for attr in attrs {
match self.attrs.get(attr) {
Some(values) => {
for v in values {
pairs.push((attr, v))
2019-01-20 00:51:22 +01:00
}
}
2019-01-20 01:46:17 +01:00
None => return None,
2019-01-20 00:51:22 +01:00
}
}
Some(filter_all!(f_and(
pairs
.into_iter()
.map(|(attr, value)| {
// We use FC directly here instead of f_eq to avoid an excess clone.
FC::Eq(attr, value.to_partialvalue())
})
.collect()
)))
2018-12-30 03:17:09 +01:00
}
2019-03-01 07:35:06 +01:00
pub fn gen_modlist_assert(
&self,
schema: &SchemaTransaction,
) -> Result<ModifyList<ModifyInvalid>, SchemaError> {
2019-01-28 04:54:17 +01:00
// Create a modlist from this entry. We make this assuming we want the entry
// to have this one as a subset of values. This means if we have single
// values, we'll replace, if they are multivalue, we present them.
let mut mods = ModifyList::new();
for (k, vs) in self.attrs.iter() {
// WHY?! We skip uuid here because it is INVALID for a UUID
// to be in a modlist, and the base.rs plugin will fail if it
// is there. This actually doesn't matter, because to apply the
// modlist in these situations we already know the entry MUST
// exist with that UUID, we only need to conform it's other
// attributes into the same state.
//
// In the future, if we make uuid a real entry type, then this
// check can "go away" because uuid will never exist as an ava.
//
2019-07-28 13:18:25 +02:00
// NOTE: Remove this check when uuid becomes a real attribute.
// UUID is now a real attribute, but it also has an ava for db_entry
// conversion - so what do? If we remove it here, we could have CSN issue with
// repl on uuid conflict, but it probably shouldn't be an ava either ...
2019-07-28 13:18:25 +02:00
// as a result, I think we need to keep this continue line to not cause issues.
if k == "uuid" {
continue;
}
2019-01-28 04:54:17 +01:00
// Get the schema attribute type out.
match schema.is_multivalue(k) {
Ok(r) => {
if !r {
// As this is single value, purge then present to maintain this
// invariant
mods.push_mod(Modify::Purged(k.clone()));
}
}
// A schema error happened, fail the whole operation.
2019-03-01 07:35:06 +01:00
Err(e) => return Err(e),
2019-01-28 04:54:17 +01:00
}
for v in vs {
mods.push_mod(Modify::Present(k.clone(), v.clone()));
}
}
Ok(mods)
}
}
impl Entry<EntryReduced, EntryCommitted> {
pub fn into_pe(&self) -> ProtoEntry {
// Turn values -> Strings.
ProtoEntry {
attrs: self
.attrs
.iter()
.map(|(k, vs)| {
let pvs: Vec<_> = vs.iter().map(|v| v.to_proto_string_clone()).collect();
(k.clone(), pvs)
})
.collect(),
}
}
}
// impl<STATE> Entry<EntryValid, STATE> {
impl<VALID, STATE> Entry<VALID, STATE> {
/*
* WARNING: Should these TODO move to EntryValid only?
* I've tried to do this once, but the issue is that there
* is a lot of code in normalised and other states that
* relies on the ability to get ava. I think we may not be
* able to do so "easily".
*/
pub fn get_ava(&self, attr: &str) -> Option<Vec<&Value>> {
match self.attrs.get(attr) {
Some(vs) => {
let x: Vec<_> = vs.iter().collect();
Some(x)
}
None => None,
}
}
pub fn get_ava_set(&self, attr: &str) -> Option<BTreeSet<&Value>> {
self.attrs
.get(attr)
.and_then(|vs| Some(vs.iter().collect()))
}
pub fn get_ava_set_str(&self, attr: &str) -> Option<BTreeSet<&str>> {
self.attrs.get(attr).and_then(|vs| {
let x: Option<BTreeSet<_>> = vs.iter().map(|s| s.to_str()).collect();
x
})
}
// Returns NONE if there is more than ONE!!!!
pub fn get_ava_single(&self, attr: &str) -> Option<&Value> {
match self.attrs.get(attr) {
Some(vs) => {
if vs.len() != 1 {
None
} else {
vs.iter().take(1).next()
}
}
None => None,
}
}
pub fn get_ava_names(&self) -> BTreeSet<&str> {
// Get the set of all attribute names in the entry
let r: BTreeSet<&str> = self.attrs.keys().map(|a| a.as_str()).collect();
r
}
pub fn attribute_pres(&self, attr: &str) -> bool {
// Note, we don't normalise attr name, but I think that's not
// something we should over-optimise on.
self.attrs.contains_key(attr)
}
#[inline]
pub fn attribute_value_pres(&self, attr: &str, value: &PartialValue) -> bool {
// Yeah, this is techdebt, but both names of this fn are valid - we are
// checking if an attribute-value is equal to, or asserting it's present
// as a pair. So I leave both, and let the compiler work it out.
self.attribute_equality(attr, value)
}
pub fn attribute_equality(&self, attr: &str, value: &PartialValue) -> bool {
// we assume based on schema normalisation on the way in
// that the equality here of the raw values MUST be correct.
// We also normalise filters, to ensure that their values are
// syntax valid and will correctly match here with our indexes.
match self.attrs.get(attr) {
Some(v_list) => v_list.contains(value),
None => false,
}
}
pub fn attribute_substring(&self, attr: &str, subvalue: &PartialValue) -> bool {
match self.attrs.get(attr) {
2019-07-27 08:54:31 +02:00
Some(v_list) => v_list
.iter()
.fold(false, |acc, v| if acc { acc } else { v.contains(subvalue) }),
None => false,
}
}
pub fn classes(&self) -> Option<EntryClasses> {
// Get the class vec, if any?
// How do we indicate "empty?"
let v = self.attrs.get("class").map(|c| c.len())?;
let c = self.attrs.get("class").map(|c| c.iter());
Some(EntryClasses { size: v, inner: c })
}
pub fn avas(&self) -> EntryAvas {
EntryAvas {
inner: self.attrs.iter(),
}
}
// Since EntryValid/Invalid is just about class adherenece, not Value correctness, we
// can now apply filters to invalid entries - why? Because even if they aren't class
// valid, we still have strict typing checks between the filter -> entry to guarantee
// they should be functional. We'll never match something that isn't syntactially valid.
pub fn entry_match_no_index(&self, filter: &Filter<FilterValidResolved>) -> bool {
self.entry_match_no_index_inner(filter.to_inner())
}
// This is private, but exists on all types, so that valid and normal can then
// expose the simpler wrapper for entry_match_no_index only.
// Assert if this filter matches the entry (no index)
fn entry_match_no_index_inner(&self, filter: &FilterResolved) -> bool {
// Go through the filter components and check them in the entry.
// This is recursive!!!!
match filter {
FilterResolved::Eq(attr, value) => self.attribute_equality(attr.as_str(), value),
FilterResolved::Sub(attr, subvalue) => {
self.attribute_substring(attr.as_str(), subvalue)
}
FilterResolved::Pres(attr) => {
// Given attr, is is present in the entry?
self.attribute_pres(attr.as_str())
}
FilterResolved::Or(l) => l.iter().fold(false, |acc, f| {
// Check with ftweedal about or filter zero len correctness.
if acc {
acc
} else {
self.entry_match_no_index_inner(f)
}
}),
FilterResolved::And(l) => l.iter().fold(true, |acc, f| {
// Check with ftweedal about and filter zero len correctness.
if acc {
self.entry_match_no_index_inner(f)
} else {
acc
}
}),
FilterResolved::AndNot(f) => !self.entry_match_no_index_inner(f),
}
}
}
impl<STATE> Entry<EntryInvalid, STATE>
2019-01-29 08:17:28 +01:00
where
STATE: Copy,
{
// This should always work? It's only on validate that we'll build
// a list of syntax violations ...
// If this already exists, we silently drop the event? Is that an
// acceptable interface?
pub fn add_ava(&mut self, attr: &str, value: &Value) {
// How do we make this turn into an ok / err?
self.attrs
.entry(attr.to_string())
.and_modify(|v| {
// Here we need to actually do a check/binary search ...
if v.contains(value) {
// It already exists, done!
} else {
v.insert(value.clone());
}
})
.or_insert(btreeset![value.clone()]);
}
fn remove_ava(&mut self, attr: &str, value: &PartialValue) {
// It would be great to remove these extra allocations, but they
// really don't cost much :(
self.attrs.entry(attr.to_string()).and_modify(|v| {
// Here we need to actually do a check/binary search ...
v.remove(value);
});
}
pub fn purge_ava(&mut self, attr: &str) {
self.attrs.remove(attr);
}
/// Overwrite the existing avas.
pub fn set_avas(&mut self, attr: &str, values: Vec<Value>) {
// Overwrite the existing value, build a tree from the list.
let x: BTreeSet<_> = values.into_iter().collect();
let _ = self.attrs.insert(attr.to_string(), x);
}
pub fn avas_mut(&mut self) -> EntryAvasMut {
EntryAvasMut {
inner: self.attrs.iter_mut(),
}
}
2019-01-28 04:54:17 +01:00
// Should this be schemaless, relying on checks of the modlist, and the entry validate after?
// YES. Makes it very cheap.
pub fn apply_modlist(&mut self, modlist: &ModifyList<ModifyValid>) {
// -> Result<Entry<EntryInvalid, STATE>, OperationError> {
2019-01-28 04:54:17 +01:00
// Apply a modlist, generating a new entry that conforms to the changes.
// This is effectively clone-and-transform
// mutate
for modify in modlist {
2019-01-28 04:54:17 +01:00
match modify {
Modify::Present(a, v) => self.add_ava(a.as_str(), v),
Modify::Removed(a, v) => self.remove_ava(a.as_str(), v),
Modify::Purged(a) => self.purge_ava(a.as_str()),
2019-01-28 04:54:17 +01:00
}
}
}
2018-09-29 09:54:16 +02:00
}
impl<VALID, STATE> PartialEq for Entry<VALID, STATE> {
fn eq(&self, rhs: &Entry<VALID, STATE>) -> bool {
// This may look naive - but it is correct. This is because
// all items that end up in an item MUST have passed through
// schema validation and normalisation so we can assume that
// all rules were applied correctly. Thus we can just simply
// do a char-compare like this.
//
// Of course, this is only true on the "Valid" types ... the others
// are not guaranteed to support this ... but more likely that will
// just end in eager false-results. We'll never say something is true
// that should NOT be.
self.attrs == rhs.attrs
}
}
impl From<&SchemaAttribute> for Entry<EntryValid, EntryNew> {
fn from(s: &SchemaAttribute) -> Self {
// Convert an Attribute to an entry ... make it good!
let uuid = s.uuid.clone();
let uuid_v = btreeset![Value::new_uuidr(&uuid)];
let name_v = btreeset![Value::new_iutf8(s.name.clone())];
let desc_v = btreeset![Value::new_utf8(s.description.clone())];
let multivalue_v = btreeset![Value::from(s.multivalue)];
let index_v: BTreeSet<_> = s.index.iter().map(|i| Value::from(i.clone())).collect();
let syntax_v = btreeset![Value::from(s.syntax.clone())];
// Build the BTreeMap of the attributes relevant
let mut attrs: BTreeMap<String, BTreeSet<Value>> = BTreeMap::new();
attrs.insert("name".to_string(), name_v);
attrs.insert("description".to_string(), desc_v);
attrs.insert("uuid".to_string(), uuid_v);
attrs.insert("multivalue".to_string(), multivalue_v);
attrs.insert("index".to_string(), index_v);
attrs.insert("syntax".to_string(), syntax_v);
attrs.insert(
"class".to_string(),
btreeset![
Value::new_class("object"),
Value::new_class("system"),
Value::new_class("attributetype")
],
);
// Insert stuff.
Entry {
valid: EntryValid { uuid: uuid },
state: EntryNew,
attrs: attrs,
}
}
2018-09-29 09:54:16 +02:00
}
impl From<&SchemaClass> for Entry<EntryValid, EntryNew> {
fn from(s: &SchemaClass) -> Self {
let uuid = s.uuid.clone();
let uuid_v = btreeset![Value::new_uuidr(&uuid)];
let name_v = btreeset![Value::new_iutf8(s.name.clone())];
let desc_v = btreeset![Value::new_utf8(s.description.clone())];
let mut attrs: BTreeMap<String, BTreeSet<Value>> = BTreeMap::new();
attrs.insert("name".to_string(), name_v);
attrs.insert("description".to_string(), desc_v);
attrs.insert("uuid".to_string(), uuid_v);
attrs.insert(
"class".to_string(),
btreeset![
Value::new_class("object"),
Value::new_class("system"),
Value::new_class("classtype")
],
);
if s.systemmay.len() > 0 {
attrs.insert(
"systemmay".to_string(),
s.systemmay
.iter()
.map(|sm| Value::new_attr(sm.as_str()))
.collect(),
);
}
if s.systemmust.len() > 0 {
attrs.insert(
"systemmust".to_string(),
s.systemmust
.iter()
.map(|sm| Value::new_attr(sm.as_str()))
.collect(),
);
}
Entry {
valid: EntryValid { uuid: uuid },
state: EntryNew,
attrs: attrs,
}
}
2018-09-29 09:54:16 +02:00
}
#[cfg(test)]
mod tests {
use crate::entry::{Entry, EntryInvalid, EntryNew};
use crate::modify::{Modify, ModifyList};
use crate::value::{PartialValue, Value};
2018-09-29 09:54:16 +02:00
#[test]
fn test_entry_basic() {
2019-01-28 10:16:53 +01:00
let mut e: Entry<EntryInvalid, EntryNew> = Entry::new();
2018-09-29 09:54:16 +02:00
e.add_ava("userid", &Value::from("william"));
2018-11-14 02:54:59 +01:00
}
2018-11-14 02:54:59 +01:00
#[test]
fn test_entry_dup_value() {
// Schema doesn't matter here because we are duplicating a value
// it should fail!
// We still probably need schema here anyway to validate what we
// are adding ... Or do we validate after the changes are made in
// total?
2019-01-28 10:16:53 +01:00
let mut e: Entry<EntryInvalid, EntryNew> = Entry::new();
e.add_ava("userid", &Value::from("william"));
e.add_ava("userid", &Value::from("william"));
2018-11-14 02:54:59 +01:00
let values = e.get_ava("userid").expect("Failed to get ava");
2018-11-14 02:54:59 +01:00
// Should only be one value!
assert_eq!(values.len(), 1)
}
2018-11-07 07:54:02 +01:00
#[test]
fn test_entry_pres() {
2019-01-28 10:16:53 +01:00
let mut e: Entry<EntryInvalid, EntryNew> = Entry::new();
e.add_ava("userid", &Value::from("william"));
2018-11-14 02:54:59 +01:00
assert!(e.attribute_pres("userid"));
assert!(!e.attribute_pres("name"));
}
#[test]
fn test_entry_equality() {
2019-01-28 10:16:53 +01:00
let mut e: Entry<EntryInvalid, EntryNew> = Entry::new();
2018-11-07 07:54:02 +01:00
e.add_ava("userid", &Value::from("william"));
2018-11-07 07:54:02 +01:00
assert!(e.attribute_equality("userid", &PartialValue::new_utf8s("william")));
assert!(!e.attribute_equality("userid", &PartialValue::new_utf8s("test")));
assert!(!e.attribute_equality("nonexist", &PartialValue::new_utf8s("william")));
// Also test non-matching attr syntax
assert!(!e.attribute_equality("userid", &PartialValue::new_class("william")));
2018-11-07 07:54:02 +01:00
}
#[test]
fn test_entry_substring() {
let mut e: Entry<EntryInvalid, EntryNew> = Entry::new();
e.add_ava("userid", &Value::from("william"));
assert!(e.attribute_substring("userid", &PartialValue::new_utf8s("william")));
assert!(e.attribute_substring("userid", &PartialValue::new_utf8s("will")));
assert!(e.attribute_substring("userid", &PartialValue::new_utf8s("liam")));
assert!(e.attribute_substring("userid", &PartialValue::new_utf8s("lli")));
assert!(!e.attribute_substring("userid", &PartialValue::new_utf8s("llim")));
assert!(!e.attribute_substring("userid", &PartialValue::new_utf8s("bob")));
assert!(!e.attribute_substring("userid", &PartialValue::new_utf8s("wl")));
}
2019-01-28 04:54:17 +01:00
#[test]
fn test_entry_apply_modlist() {
// Test application of changes to an entry.
2019-01-28 10:16:53 +01:00
let mut e: Entry<EntryInvalid, EntryNew> = Entry::new();
e.add_ava("userid", &Value::from("william"));
2019-01-28 04:54:17 +01:00
let mods = unsafe {
ModifyList::new_valid_list(vec![Modify::Present(
String::from("attr"),
Value::new_iutf8s("value"),
)])
};
2019-01-28 04:54:17 +01:00
e.apply_modlist(&mods);
2019-01-28 04:54:17 +01:00
// Assert the changes are there
assert!(e.attribute_equality("attr", &PartialValue::new_iutf8s("value")));
2019-01-28 04:54:17 +01:00
// Assert present for multivalue
// Assert purge on single/multi/empty value
// Assert removed on value that exists and doesn't exist
}
}