mirror of
https://github.com/kanidm/kanidm.git
synced 2025-04-26 04:05:38 +02:00
Compare commits
7 commits
730ba1cdf5
...
81c38af10b
Author | SHA1 | Date | |
---|---|---|---|
|
81c38af10b | ||
|
b113262357 | ||
|
d025e8fff0 | ||
|
71039cf069 | ||
|
d89fad3f42 | ||
|
e35d4fddc1 | ||
|
fa36325618 |
4
Cargo.lock
generated
4
Cargo.lock
generated
|
@ -5658,9 +5658,9 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "tokio"
|
||||
version = "1.44.1"
|
||||
version = "1.44.2"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "f382da615b842244d4b8738c82ed1275e6c5dd90c459a30941cd07080b06c91a"
|
||||
checksum = "e6b88822cbe49de4185e3a4cbf8321dd487cf5fe0c5c65695fef6346371e9c48"
|
||||
dependencies = [
|
||||
"backtrace",
|
||||
"bytes",
|
||||
|
|
|
@ -268,7 +268,7 @@ tempfile = "3.15.0"
|
|||
testkit-macros = { path = "./server/testkit-macros" }
|
||||
time = { version = "^0.3.36", features = ["formatting", "local-offset"] }
|
||||
|
||||
tokio = "^1.43.0"
|
||||
tokio = "^1.44.2"
|
||||
tokio-openssl = "^0.6.5"
|
||||
tokio-util = "^0.7.13"
|
||||
|
||||
|
|
171
book/src/developers/designs/service_accounts.md
Normal file
171
book/src/developers/designs/service_accounts.md
Normal file
|
@ -0,0 +1,171 @@
|
|||
# Service Account Improvements - 2025
|
||||
|
||||
Initially when service accounts were added to Kanidm they were simply meant to be "detached"
|
||||
accounts that could be used for some API access to Kani, or some other background tasks.
|
||||
|
||||
But as the server has evolved we need to consider how we can use these in other ways.
|
||||
|
||||
We have extented the OAuth2 client types to now almost act like a service account, especially
|
||||
with the behaviour of things like a client credentials grant.
|
||||
|
||||
At this point we need to decide how to proceed with service accounts and what shape they could
|
||||
take in the future.
|
||||
|
||||
## Prior Art
|
||||
|
||||
* (Microsoft AD-DS Service Accounts)[https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-service-accounts]
|
||||
* (FreeIPA Service Principals)[https://www.freeipa.org/page/Administrators_Guide#managing-service-principals]
|
||||
|
||||
Note that both of these have some kerberos centric ideas as KRB requires service accounts to mutually
|
||||
authenticate to clients, which means they need to maintain credentials. This is different to our needs,
|
||||
but there are still some ideas in these docs worth knowing about and considering like group managed
|
||||
service accounts (gMSA).
|
||||
|
||||
## Current state of affairs
|
||||
|
||||
We have:
|
||||
|
||||
* Break glass accounts (`admin`/`idm_admin`) are service accounts, may not have delegated management.
|
||||
* OAuth2 is not a service account, supports delegated management.
|
||||
* Service accounts can be group or user managed.
|
||||
* Applications (To Be Introduced) is an extension of a Service account.
|
||||
|
||||
From this we can see that we have some separation, but also some cross over of functionality.
|
||||
break glass isn't delegated, but service account is, OAuth2 isn't an SA, but Applications are.
|
||||
|
||||
## Capabilities
|
||||
|
||||
In order to properly handle this, we don't want to grant unbounded abilities to types, we don't
|
||||
want to fully merge them, but we want to be able to mix-match what they require.
|
||||
|
||||
This also makes it possible in the future that we can more easily assign (or remove) a capability
|
||||
from an account type.
|
||||
|
||||
To achieve this we should introduce the idea of capabilities - capabilities can act via schema
|
||||
classes, and we can extend the schema such that only the parent class needs to know that the
|
||||
capabilities class is required.
|
||||
|
||||
This allows us to nominate more carefully what each role type can or can't do. More importantly
|
||||
within the server, we don't have to hardcode that "service accounts and applications" can use
|
||||
api tokens vs every other capability type. We only need look for the capability on the entry.
|
||||
|
||||
|
||||
| Capabilities | Api Token | OAuth2 Sessions | Interactive Login |
|
||||
|-----------------|------------------|------------------------------|---------------------|
|
||||
| OAuth2 | No | Via Client Credentials Grant | No |
|
||||
| Application | Yes (ro) | No | No |
|
||||
| Service Account | Yes (rw capable) | Yes (via session grant (TBD) | Yes (to be removed) |
|
||||
| Machine Account | Yes (ro) | No | No |
|
||||
| Break Glass | No | No | Yes |
|
||||
| Person | No | Yes | Yes |
|
||||
|
||||
A key requirement of this is that we want each role to have a defined intent - it shouldn't be
|
||||
the everything role, it still needs to be focused and administered in it's own right.
|
||||
|
||||
| | Intent |
|
||||
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| OAuth2 | An OAuth2 client (external server/service) that is treating Kani as the IDP it trusts to validate user authorisation to it's resources. |
|
||||
| Application | An application password context, allowing per-user/per-device/per-application passwords to validated, as well as defining group based authorisation of whom may use this application |
|
||||
| Service Account | An account that belongs to a process or automation that needs to read from or write to Kanidm, or a Kanidm related service. |
|
||||
| Machine Account | A domain joined machine that is reads user posix or login information. May be used to configure machine service accounts in future. |
|
||||
| Break Glass | An emergency access account used in disaster recovery. |
|
||||
| Person | A humans owned account that needs to authenticate day to day, and self manage their own credentials. A person may need to manage other accounts and resource types |
|
||||
|
||||
This has the benefit that it makes it easier to assign the permissions via ACP (since we can filter
|
||||
on the Target class *and* capability type).
|
||||
|
||||
### Example
|
||||
|
||||
An Email service has an SMTP gateway and OAuth2 web ui.
|
||||
|
||||
Although this is "the email service" it is made up of multiple parts that each have their own intents.
|
||||
|
||||
The Webui has an Oauth2 client created to define the relationship of who may access the webui.
|
||||
|
||||
An LDAP application is made to allow IMAP/SMTP processes to authenticate users with application passwords and
|
||||
to read users PII via LDAP.
|
||||
|
||||
## Below was the drafting process of some ideas
|
||||
|
||||
### Attach roles to service accounts.
|
||||
|
||||
In this approach we centre the service account, and allow optional extension of other concerns. This
|
||||
would make OAuth2 applications an extension of a service account. Similar application would become
|
||||
an extension of service account.
|
||||
|
||||
This would mean that we create a service account first, then need a way to extend it with the
|
||||
application or oauth2 types.
|
||||
|
||||
This would mean that a service account could potentially be everything - an application password
|
||||
provider, an oauth2 client, and more. This would make the administration very difficult and deeply
|
||||
nested on the single service account type, and could encourage bad administration practices as
|
||||
admins can "shovel in" every possible role to single accounts.
|
||||
|
||||
|
||||
PROS:
|
||||
|
||||
* OAuth2 applications get the ability to have api tokens to kani for other functionality
|
||||
* Fullstacks like a mail server get a single SA that does everything
|
||||
* These whole stack service accounts get access to every auth type and feature available
|
||||
|
||||
CONS:
|
||||
|
||||
* Makes the API around service accounts a bit messier
|
||||
* Compromise of the SA or SA Manager may lead to higher impact due to more features in one place
|
||||
* May be confusing to administrators
|
||||
* More "inheritance" of schema classes, when we may want to try to simplify to single classes in line with SCIM.
|
||||
* Harder to audit capabilities
|
||||
* The administration UI becomes a shitshow as the Service Account is now a kitchen sink.
|
||||
|
||||
### Separate Concerns
|
||||
|
||||
In this approach we split our concerns. This is similar to today, but taken a bit further.
|
||||
|
||||
In this example, we would split Application to *just* be about the concern of an authentication
|
||||
domain for LDAP applications. OAuth2 stays as *just* a configuration of the client and it's behaviour.
|
||||
|
||||
We would change the break glass accounts to be a separate type to Service Account. Service Account
|
||||
becomes closer to the concept of a pure api access account. The break glass accounts become a
|
||||
dedicated "emergency access account" type.
|
||||
|
||||
PROS:
|
||||
|
||||
* Similar to today, only small cleanup needed
|
||||
* Separation of concerns and credentials limit's blast radius of a possible compromise.
|
||||
* Easier auditing of capabilities of each account
|
||||
|
||||
CONS:
|
||||
|
||||
* More administrative overhead to manage the multiple accounts
|
||||
* Stacked applications will need mulitple configurations for a role - OAuth2, LDAP application, Service accounts for example in an email server with a WebUI.
|
||||
|
||||
### Bit of A, bit of B, cleanup
|
||||
|
||||
AKA Capabilities
|
||||
|
||||
Rather than fully merge all the types, or fully split them, have a *little* merge of some bits, allowing
|
||||
some limited extension of actions to specific actors. Effectively we end up granting *capabilities*
|
||||
to different roles, and we can add extra capabilities later if we want.
|
||||
|
||||
OAuth2 and Applications would gain the ability to have API tokens associated for some tasks and
|
||||
could act on Kanidm, but they wouldn't be fully fleshed service accounts.
|
||||
|
||||
| Capabilities | Api Token | OAuth2 Sessions | Interactive Login |
|
||||
|-----------------|------------------|------------------------------|---------------------|
|
||||
| OAuth2 | No | Via Client Credentials Grant | No |
|
||||
| Application | Yes | No | No |
|
||||
| Service Account | Yes (rw capable) | Yes (via session grant (TBD) | Yes (to be removed) |
|
||||
| Break Glass | No | No | Yes |
|
||||
|
||||
PROS:
|
||||
|
||||
* Minimises changes to existing deployments
|
||||
* Grants some new abilities within limits to other roles
|
||||
* While not as locked down as separate concern proposal, still minimises the risk of compromise of an SA
|
||||
|
||||
CONS:
|
||||
|
||||
* Requires admins to have multiple accounts in some contexts (as above).
|
||||
* Auditing requires knowledge of what each roles capabilities are, and what the capabilities do
|
||||
|
||||
|
|
@ -194,7 +194,8 @@ impl Into<PamAuthResponse> for AuthRequest {
|
|||
}
|
||||
|
||||
pub enum AuthResult {
|
||||
Success { token: UserToken },
|
||||
Success,
|
||||
SuccessUpdate { new_token: UserToken },
|
||||
Denied,
|
||||
Next(AuthRequest),
|
||||
}
|
||||
|
@ -251,6 +252,7 @@ pub trait IdProvider {
|
|||
async fn unix_user_online_auth_step(
|
||||
&self,
|
||||
_account_id: &str,
|
||||
_current_token: Option<&UserToken>,
|
||||
_cred_handler: &mut AuthCredHandler,
|
||||
_pam_next_req: PamAuthRequest,
|
||||
_tpm: &mut tpm::BoxedDynTpm,
|
||||
|
@ -290,7 +292,8 @@ pub trait IdProvider {
|
|||
// TPM key.
|
||||
async fn unix_user_offline_auth_step(
|
||||
&self,
|
||||
_token: &UserToken,
|
||||
_current_token: Option<&UserToken>,
|
||||
_session_token: &UserToken,
|
||||
_cred_handler: &mut AuthCredHandler,
|
||||
_pam_next_req: PamAuthRequest,
|
||||
_tpm: &mut tpm::BoxedDynTpm,
|
||||
|
|
|
@ -55,8 +55,6 @@ impl KanidmProvider {
|
|||
tpm: &mut tpm::BoxedDynTpm,
|
||||
machine_key: &tpm::MachineKey,
|
||||
) -> Result<Self, IdpError> {
|
||||
// FUTURE: Randomised jitter on next check at startup.
|
||||
|
||||
// Initially retrieve our HMAC key.
|
||||
let loadable_hmac_key: Option<tpm::LoadableHmacKey> = keystore
|
||||
.get_tagged_hsm_key(KANIDM_HMAC_KEY)
|
||||
|
@ -248,13 +246,25 @@ impl KanidmProviderInternal {
|
|||
// Proceed
|
||||
CacheState::Online => true,
|
||||
CacheState::OfflineNextCheck(at_time) if now >= at_time => {
|
||||
// Attempt online. If fails, return token.
|
||||
self.attempt_online(tpm, now).await
|
||||
}
|
||||
CacheState::OfflineNextCheck(_) | CacheState::Offline => false,
|
||||
}
|
||||
}
|
||||
|
||||
#[instrument(level = "debug", skip_all)]
|
||||
async fn check_online_right_meow(
|
||||
&mut self,
|
||||
tpm: &mut tpm::BoxedDynTpm,
|
||||
now: SystemTime,
|
||||
) -> bool {
|
||||
match self.state {
|
||||
CacheState::Online => true,
|
||||
CacheState::OfflineNextCheck(_) => self.attempt_online(tpm, now).await,
|
||||
CacheState::Offline => false,
|
||||
}
|
||||
}
|
||||
|
||||
#[instrument(level = "debug", skip_all)]
|
||||
async fn attempt_online(&mut self, _tpm: &mut tpm::BoxedDynTpm, now: SystemTime) -> bool {
|
||||
let mut max_attempts = 3;
|
||||
|
@ -295,7 +305,7 @@ impl IdProvider for KanidmProvider {
|
|||
|
||||
async fn attempt_online(&self, tpm: &mut tpm::BoxedDynTpm, now: SystemTime) -> bool {
|
||||
let mut inner = self.inner.lock().await;
|
||||
inner.check_online(tpm, now).await
|
||||
inner.check_online_right_meow(tpm, now).await
|
||||
}
|
||||
|
||||
async fn mark_next_check(&self, now: SystemTime) {
|
||||
|
@ -431,6 +441,7 @@ impl IdProvider for KanidmProvider {
|
|||
async fn unix_user_online_auth_step(
|
||||
&self,
|
||||
account_id: &str,
|
||||
current_token: Option<&UserToken>,
|
||||
cred_handler: &mut AuthCredHandler,
|
||||
pam_next_req: PamAuthRequest,
|
||||
tpm: &mut tpm::BoxedDynTpm,
|
||||
|
@ -449,15 +460,23 @@ impl IdProvider for KanidmProvider {
|
|||
|
||||
match auth_result {
|
||||
Ok(Some(n_tok)) => {
|
||||
let mut token = UserToken::from(n_tok);
|
||||
token.kanidm_update_cached_password(
|
||||
let mut new_token = UserToken::from(n_tok);
|
||||
|
||||
// Update any keys that may have been in the db in the current
|
||||
// token.
|
||||
if let Some(previous_token) = current_token {
|
||||
new_token.extra_keys = previous_token.extra_keys.clone();
|
||||
}
|
||||
|
||||
// Set any new keys that are relevant from this authentication
|
||||
new_token.kanidm_update_cached_password(
|
||||
&inner.crypto_policy,
|
||||
cred.as_str(),
|
||||
tpm,
|
||||
&inner.hmac_key,
|
||||
);
|
||||
|
||||
Ok(AuthResult::Success { token })
|
||||
Ok(AuthResult::SuccessUpdate { new_token })
|
||||
}
|
||||
Ok(None) => {
|
||||
// TODO: i'm not a huge fan of this rn, but currently the way we handle
|
||||
|
@ -552,7 +571,8 @@ impl IdProvider for KanidmProvider {
|
|||
|
||||
async fn unix_user_offline_auth_step(
|
||||
&self,
|
||||
token: &UserToken,
|
||||
current_token: Option<&UserToken>,
|
||||
session_token: &UserToken,
|
||||
cred_handler: &mut AuthCredHandler,
|
||||
pam_next_req: PamAuthRequest,
|
||||
tpm: &mut tpm::BoxedDynTpm,
|
||||
|
@ -561,11 +581,13 @@ impl IdProvider for KanidmProvider {
|
|||
(AuthCredHandler::Password, PamAuthRequest::Password { cred }) => {
|
||||
let inner = self.inner.lock().await;
|
||||
|
||||
if token.kanidm_check_cached_password(cred.as_str(), tpm, &inner.hmac_key) {
|
||||
if session_token.kanidm_check_cached_password(cred.as_str(), tpm, &inner.hmac_key) {
|
||||
// Ensure we have either the latest token, or if none, at least the session token.
|
||||
let new_token = current_token.unwrap_or(session_token).clone();
|
||||
|
||||
// TODO: We can update the token here and then do lockouts.
|
||||
Ok(AuthResult::Success {
|
||||
token: token.clone(),
|
||||
})
|
||||
|
||||
Ok(AuthResult::SuccessUpdate { new_token })
|
||||
} else {
|
||||
Ok(AuthResult::Denied)
|
||||
}
|
||||
|
|
|
@ -47,7 +47,6 @@ pub enum AuthSession {
|
|||
client: Arc<dyn IdProvider + Sync + Send>,
|
||||
account_id: String,
|
||||
id: Id,
|
||||
token: Option<Box<UserToken>>,
|
||||
cred_handler: AuthCredHandler,
|
||||
/// Some authentication operations may need to spawn background tasks. These tasks need
|
||||
/// to know when to stop as the caller has disconnected. This receiver allows that, so
|
||||
|
@ -59,7 +58,7 @@ pub enum AuthSession {
|
|||
account_id: String,
|
||||
id: Id,
|
||||
client: Arc<dyn IdProvider + Sync + Send>,
|
||||
token: Box<UserToken>,
|
||||
session_token: Box<UserToken>,
|
||||
cred_handler: AuthCredHandler,
|
||||
},
|
||||
System {
|
||||
|
@ -225,7 +224,7 @@ impl Resolver {
|
|||
// Attempt to search these in the db.
|
||||
let mut dbtxn = self.db.write().await;
|
||||
let r = dbtxn.get_account(account_id).map_err(|err| {
|
||||
debug!("get_cached_usertoken {:?}", err);
|
||||
debug!(?err, "get_cached_usertoken");
|
||||
})?;
|
||||
|
||||
drop(dbtxn);
|
||||
|
@ -318,7 +317,12 @@ impl Resolver {
|
|||
}
|
||||
}
|
||||
|
||||
async fn set_cache_usertoken(&self, token: &mut UserToken) -> Result<(), ()> {
|
||||
async fn set_cache_usertoken(
|
||||
&self,
|
||||
token: &mut UserToken,
|
||||
// This is just for proof that only one write can occur at a time.
|
||||
_tpm: &mut BoxedDynTpm,
|
||||
) -> Result<(), ()> {
|
||||
// Set an expiry
|
||||
let ex_time = SystemTime::now() + Duration::from_secs(self.timeout_seconds);
|
||||
let offset = ex_time
|
||||
|
@ -451,6 +455,22 @@ impl Resolver {
|
|||
|
||||
let mut hsm_lock = self.hsm.lock().await;
|
||||
|
||||
// We need to re-acquire the token now behind the hsmlock - this is so that
|
||||
// we know that as we write the updated token, we know that no one else has
|
||||
// written to this token, since we are now the only task that is allowed
|
||||
// to be in a write phase.
|
||||
let token = if token.is_some() {
|
||||
self.get_cached_usertoken(account_id)
|
||||
.await
|
||||
.map(|(_expired, option_token)| option_token)
|
||||
.map_err(|err| {
|
||||
debug!(?err, "get_usertoken error");
|
||||
})?
|
||||
} else {
|
||||
// Was already none, leave it that way.
|
||||
None
|
||||
};
|
||||
|
||||
let user_get_result = if let Some(tok) = token.as_ref() {
|
||||
// Re-use the provider that the token is from.
|
||||
match self.client_ids.get(&tok.provider) {
|
||||
|
@ -486,12 +506,11 @@ impl Resolver {
|
|||
}
|
||||
};
|
||||
|
||||
drop(hsm_lock);
|
||||
|
||||
match user_get_result {
|
||||
Ok(UserTokenState::Update(mut n_tok)) => {
|
||||
// We have the token!
|
||||
self.set_cache_usertoken(&mut n_tok).await?;
|
||||
self.set_cache_usertoken(&mut n_tok, hsm_lock.deref_mut())
|
||||
.await?;
|
||||
Ok(Some(n_tok))
|
||||
}
|
||||
Ok(UserTokenState::NotFound) => {
|
||||
|
@ -958,7 +977,6 @@ impl Resolver {
|
|||
client,
|
||||
account_id: account_id.to_string(),
|
||||
id,
|
||||
token: Some(Box::new(token)),
|
||||
cred_handler,
|
||||
shutdown_rx,
|
||||
};
|
||||
|
@ -979,7 +997,7 @@ impl Resolver {
|
|||
account_id: account_id.to_string(),
|
||||
id,
|
||||
client,
|
||||
token: Box::new(token),
|
||||
session_token: Box::new(token),
|
||||
cred_handler,
|
||||
};
|
||||
Ok((auth_session, next_req.into()))
|
||||
|
@ -1022,7 +1040,6 @@ impl Resolver {
|
|||
client: client.clone(),
|
||||
account_id: account_id.to_string(),
|
||||
id,
|
||||
token: None,
|
||||
cred_handler,
|
||||
shutdown_rx,
|
||||
};
|
||||
|
@ -1050,19 +1067,32 @@ impl Resolver {
|
|||
auth_session: &mut AuthSession,
|
||||
pam_next_req: PamAuthRequest,
|
||||
) -> Result<PamAuthResponse, ()> {
|
||||
let mut hsm_lock = self.hsm.lock().await;
|
||||
|
||||
let maybe_err = match &mut *auth_session {
|
||||
&mut AuthSession::Online {
|
||||
ref client,
|
||||
ref account_id,
|
||||
id: _,
|
||||
token: _,
|
||||
ref id,
|
||||
ref mut cred_handler,
|
||||
ref shutdown_rx,
|
||||
} => {
|
||||
let mut hsm_lock = self.hsm.lock().await;
|
||||
// This is not used in the authentication, but is so that any new
|
||||
// extra keys or data on the token are updated correctly if the authentication
|
||||
// requests an update. Since we hold the hsm_lock, no other task can
|
||||
// update this token between now and completion of the fn.
|
||||
let current_token = self
|
||||
.get_cached_usertoken(id)
|
||||
.await
|
||||
.map(|(_expired, option_token)| option_token)
|
||||
.map_err(|err| {
|
||||
debug!(?err, "get_usertoken error");
|
||||
})?;
|
||||
|
||||
let result = client
|
||||
.unix_user_online_auth_step(
|
||||
account_id,
|
||||
current_token.as_ref(),
|
||||
cred_handler,
|
||||
pam_next_req,
|
||||
hsm_lock.deref_mut(),
|
||||
|
@ -1071,7 +1101,7 @@ impl Resolver {
|
|||
.await;
|
||||
|
||||
match result {
|
||||
Ok(AuthResult::Success { .. }) => {
|
||||
Ok(AuthResult::SuccessUpdate { .. } | AuthResult::Success) => {
|
||||
info!(?account_id, "Authentication Success");
|
||||
}
|
||||
Ok(AuthResult::Denied) => {
|
||||
|
@ -1087,17 +1117,29 @@ impl Resolver {
|
|||
}
|
||||
&mut AuthSession::Offline {
|
||||
ref account_id,
|
||||
id: _,
|
||||
ref id,
|
||||
ref client,
|
||||
ref token,
|
||||
ref session_token,
|
||||
ref mut cred_handler,
|
||||
} => {
|
||||
// This is not used in the authentication, but is so that any new
|
||||
// extra keys or data on the token are updated correctly if the authentication
|
||||
// requests an update. Since we hold the hsm_lock, no other task can
|
||||
// update this token between now and completion of the fn.
|
||||
let current_token = self
|
||||
.get_cached_usertoken(id)
|
||||
.await
|
||||
.map(|(_expired, option_token)| option_token)
|
||||
.map_err(|err| {
|
||||
debug!(?err, "get_usertoken error");
|
||||
})?;
|
||||
|
||||
// We are offline, continue. Remember, authsession should have
|
||||
// *everything you need* to proceed here!
|
||||
let mut hsm_lock = self.hsm.lock().await;
|
||||
let result = client
|
||||
.unix_user_offline_auth_step(
|
||||
token,
|
||||
current_token.as_ref(),
|
||||
session_token,
|
||||
cred_handler,
|
||||
pam_next_req,
|
||||
hsm_lock.deref_mut(),
|
||||
|
@ -1105,7 +1147,7 @@ impl Resolver {
|
|||
.await;
|
||||
|
||||
match result {
|
||||
Ok(AuthResult::Success { .. }) => {
|
||||
Ok(AuthResult::SuccessUpdate { .. } | AuthResult::Success) => {
|
||||
info!(?account_id, "Authentication Success");
|
||||
}
|
||||
Ok(AuthResult::Denied) => {
|
||||
|
@ -1156,8 +1198,13 @@ impl Resolver {
|
|||
|
||||
match maybe_err {
|
||||
// What did the provider direct us to do next?
|
||||
Ok(AuthResult::Success { mut token }) => {
|
||||
self.set_cache_usertoken(&mut token).await?;
|
||||
Ok(AuthResult::Success) => {
|
||||
*auth_session = AuthSession::Success;
|
||||
Ok(PamAuthResponse::Success)
|
||||
}
|
||||
Ok(AuthResult::SuccessUpdate { mut new_token }) => {
|
||||
self.set_cache_usertoken(&mut new_token, hsm_lock.deref_mut())
|
||||
.await?;
|
||||
*auth_session = AuthSession::Success;
|
||||
|
||||
Ok(PamAuthResponse::Success)
|
||||
|
|
Loading…
Reference in a new issue